Saturday, August 22, 2020
Modular Arithmetic
Oneâ canâ alwaysâ state, ââ¬Ë itâ isâ 7.00â p.m.ââ¬â¢ andâ theâ sameâ factâ canâ beâ alsoâ putâ asâ ââ¬Ë itâ isâ 19.00 ââ¬â¢. Ifâ theâ truthâ underlyingâ theseâ twoâ statementsâ isâ understoodâ well, oneâ hasâ understoodâ ââ¬Ë particular arithmetic ââ¬Ëâ well. Theâ conventionalâ arithmeticâ isâ basedâ onâ linearâ numberâ systemâ knownâ asâ theâ ââ¬Ë numberâ lineââ¬â¢.â Modularâ Arithemeticâ wasâ introducedâ byâ Carlâ Friedrichâ Gaussâ in à 1801, inâ hisâ book ââ¬Ë Disquisitionesâ Arithmeticaeââ¬â¢. (modular).â Itâ isâ basedâ onâ circle.â A à circleâ canâ beâ dividedâ intoâ anyâ numberâ ofâ parts. Onceâ partitioned, eachâ partâ canâ beâ namedâ asâ aâ number, justâ likeâ aâ clock, whichâ consistsâ ofâ 12â divisionsâ andâ eachâ divisionâ isâ numberedâ dynamically. For the most part, theâ startingâ pointâ isâ namedâ as ââ¬Ë0ââ¬â¢. So,theâ startingâ pointâ ofâ aâ setâ ofâ numbersâ onâ aâ clockâ isâ ââ¬Ë0ââ¬â¢Ã¢ andâ notâ ââ¬Ë1ââ¬â¢. Sinceâ theâ divisionsâ â are 12, allâ whole numbers, positiveâ orâ negative, whichâ areâ multiplesâ ofâ 12, w illâ alwaysâ beâ correspondingâ toâ 0,â onâ theâ clock. Consequently, numberâ 18â onâ aâ clockâ correspondsâ toâ 18/12 . Hereâ theâ remainderâ isâ 6,â soâ theâ answerâ ofâ 13 + 5â willâ beâ 6 Thus, theâ sameâ number 18, onâ aâ circleâ withâ 5â divisions à willâ representâ numberâ 3, asâ 3â isâ theâ remainderâ whenâ 18â isâ dividedâ byâ 5.Someà examplesâ ofâ additionâ andâ multiplicationâ withâ modâ (5): 1)â â â â â 6â +â 5â = 11. Nowâ 11/5â givesâ remainderâ 1. Henceâ theâ answerâ isâ 1. 2)â â â â â 13â +â 35 = 48. Presently, 48/5â givesâ 3â asâ leftover portion. Henceâ theâ answerâ isâ 3. 3)â â â â â 9â +â ( - 4) = 5. Nowâ 5/5â givesâ 0â asâ leftover portion. Henceâ theâ answerâ isâ 0. 4)â 14â +â ( â⬠6 ) = 8 . Nowâ 8/5â givesâ 3â asâ leftover portion. Soâ theâ answerâ isâ 3. A few instances of augmentation with mod ( 5 ). 1.â â â â â 6â Xâ 11 = 66. Presently, 66/5â givesâ 1â asâ leftover portion. Soâ theâ answerâ isâ 1. 2.â â â â â 13 X 8 = 104. Nowâ 104/5â givesâ 4â asâ leftover portion . Soâ theâ answerâ isâ 4 3.â â â â â 316 X â⬠2 = - 632. Presently, 632/5â givesâ 2 asâ leftover portion. For negative numbersâ theâ calculationâ isâ anticlockwise. So , for negative numbers, theâ answerâ willâ beâ numbersâ ofâ divisionsâ (mod)â dividedâ byâ theâ remainder.Here theâ answerâ will be 3. 4.â â â â â 13 X ââ¬7 = â⬠91. Presently, 91/5â gives 1 as leftover portion. In any case, the appropriate response will be 5 â⬠1 = 4. Soâ theâ answerâ isâ 4. Works-refered to page 1.â â â â â Modular, Modular Arithmetic, wikipedia the free reference book, 2006, Recovered onâ 19-02-07 from < http://en.wikipedia.org/wiki/Modular_arithmetic> 2.â â â â â The whole clarification depends on a website page accessible at , < http://www.math.csub.edu/personnel/susan/number_bracelets/mod_arith.html> Additionalâ data: Anâ automaticâ calculatorâ ofâ anyâ typeâ ofâ operationsâ withâ anyâ numbersâ inâ modularâ arithmeticâ isâ availableâ onâ site: < http://www.math.scub.edu/personnel/susan/workforce/particular/modular.html > à à Ã
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.